
REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Puohc "=oortina buraen tor this collection of information is estimated to a.erage 1 nour oer resDonse. including the time for reviewing instructions, searcning existing aata sources,
gathering ana maintaining the data needed, ana comoletina ana reviewrg tne collection of information. Sena comments regaraing this buraen estimate or anv otner aspect of tms
collection of information "mcluaing sugaestions for reducing this Duraen iz Washington Headquarters Services. Directorate for information Ooerations and Reoorts. '2 IS Jefferson
Däv'iH—-wav Suite 12C4 Arlington VÄ 22202-4302. and to fe 0";:e o* Management and Budget. oaoerwcrK Reduction Project (S7C4019S), Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

Jan 94

3. REPORT TYPE AND DATES COVERED

Technical

4. TITLE AND SUBTITLE

Parallel Partitioning Strategies for the Adaptive
Solution of Consergation Laws

6. AUTHOR(S)

Karen D. Devine, Joseph E. Flaherty, Raymond M. Loy
Stephen R. Wheat

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Rensselaer Polytechnic Institute
Troy, NY 12180-3590

5. FUNDING NUMBERS

DAAL03-91-G-0215

9. SPONSORING/MONITORING AGENCY NAME(S) AND Al||gEj|ES)

U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ARO 29167.23-MA

11. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

12a. DISTRIBUTION /AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

ABSTRACT ON FIRST PAGE OF REPORT

19950203 224

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced □
Justification

By
Distribution/

Availability Codes

Dist

tL

Avail and/or
Special

14. SUBJECT TERMS

ON FIRST PAGE OF REPORT

15. NUMBER OF PAGES
28

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-i8

Rensselaer
Department of Computer Science

Technical Report

PARALLEL PARTITIONING STRATEGIES FOR THE

ADAPTIVE SOLUTION OF CONSERVATION LAWS

KAREN D. DEVINE

DEPARTMENT OF COMPUTER SCIENCE - RENSSELAER POLYTECHNIC INSTITUTE

TROY, NEW YORK 12180-3590

JOSEPH E. FLAHERTY, RAYMOND M. LOY

DEPARTMENT OF COMPUTER SCIENCE AND SCIENTIFIC COMPUTATION RESEARCH CENTER

RENSSELAER POLYTECHNIC INSTITUTE - TROY, NEW YORK 12180-3590

APPLIED MATHEMATICS AND MECHANICS SECTION

BENET LABORATORIES, WATERVLIET ARSENAL - WATERVLIET, NEW YORK 12189

AND

STEPHEN R. WHEAT

MASSIVELY PARALLEL COMPUTATION RESEARCH LABORATORY

SANDIA NATIONAL LABORATORIES - ALBUQUERQUE, NEW MEXICO 87185-1109

Rensselaer Polytechnic Institute
Troy, New York 12180-3590

Report No. 94-1 January 1994

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTTC CONTAINED

KNIFE)

WHICH

REPRODUCE LEGIBLY ON BLACK

AND WHITE MICROFTCHF

PARALLEL PARTITIONING STRATEGIES FOR THE
ADAPTIVE SOLUTION OF CONSERVATION LAWS *

KAREN D. DEVINEt, JOSEPH E. FLAHERTY», RAYMOND M. LOY* AND

STEPHEN R. WHEATS

Abstract. We describe and examine the performance of adaptive methods for solv-
ing hyperbolic systems of conservation laws on massively parallel computers. The differ-
ential system is approximated by a discontinuous Galerkin finite element method with a
hierarchical Legendre piecewise polynomial basis for the spatial discretization. Fluxes at
element boundaries are computed by solving an approximate Riemann problem; a pro-
jection limiter is applied to keep the average solution monotone; time discretization is
performed by Runge-Kutta integration; and a p-refinement-based error estimate is used
as an enrichment indicator. Adaptive order (p-) and mesh (h-) refinement algorithms are
presented and demonstrated. Using an element-based dynamic load balancing algorithm
called tiling and adaptive p-refinement, parallel efficiencies of over 60% are achieved on
a 1024-processor nCUBE/2 hypercube. We also demonstrate a fast, tree-based parallel
partitioning strategy for three-dimensional octree-structured meshes. This method pro-
duces partition quality comparable to recursive spectral bisection at a greatly reduced
cost.

Key words. Adaptive methods, hyperbolic systems of conservation laws, massively
parallel computation, Galerkin finite element method, h-refinement, p-refinement, load
balancing, tiling, domain decomposition, octree-derived meshes.

AMS(MOS) subject classifications. 65M20, 65M50, 65M60.

1. Introduction. Adaptive finite difference and finite element meth-
ods, which automatically refine or coarsen meshes and vary the order
of accuracy of the numerical solution, offer greater robustness and com-
putational efficiency than traditional methods. High-order methods and
the combination of mesh refinement and order variation (Ap-refinement)
have been shown to produce effective solution techniques for elliptic [7,28]
and parabolic [2,3,10,26] problems. With few exceptions [11,16], work on

* This research was supported by the U.S. Army Research Office Contract Number
DAAL03-91-G-0215 and DAALO3-89-C-0038 with the University of Minnesota Army
High Performance Computing Research Center (AHPCRC) and the DoD Shared Re-
source Center at the AHPCRC (Flaherty, Loy); Sandia National Laboratories, operated
for the U.S. Department of Energy under contract #DE-AC04-76DP00789 (Devine,
Wheat), and Research Agreement AD-9585 (Devine); a DARPA Research Assistantship
in Parallel Processing administered by the Institute for Advanced Computer Studies,
University of Maryland (Loy); and the Grumman Corporate Research Center, Grum-
man Corporation, Bethpage, NY 11714-3580 (Loy).

' Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY
12180-3590.

• Department of Computer Science and Scientific Computation Research Center,
Rensselaer Polytechnic Institute, Troy, NY 12180-3590; and Applied Mathematics and
Mechanics Section, Benet Laboratories, Watervliet Arsenal,Watervliet, NY 12189.

' Massively Parallel Computation Research Laboratory, Sandia National Laborato-
ries, Albuquerque, NM 87185-1109.

adaptive methods for hyperbolic systems has concentrated on /i-refinement
[5,8,12].

Distributed-memory, massively parallel computers have enabled the
development of applications requiring computational resources previously
unavailable. Finite difference and finite element methods for structural
mechanics and fluid dynamics problems, for example, often require mil-
lions of degrees of freedom to accurately simulate physical phenomenon.
When solving partial differential equations (PDEs) on MIMD computers,
spatial data must be distributed across the processors' memory while min-
imizing the amount of data that must be exchanged between processors.
This problem is especially acute when dealing with (i) adaptive methods,
where mesh structure and work loads change during the computation, and
(n) three-dimensional meshes, whose data grow at a faster rate than in two-
dimensions when performing /i-refinement. The challenge is to combine the
computational efficiency of adaptive methods with the computational re-
sources of massively parallel computation.

We consider systems of (/-dimensional hyperbolic conservation laws in
m variables having the form

d

(1.1a) ut(x,t) + J2{i(x>t>u)*i=°> xGfi> t>0'

with the initial conditions

(1.1b) u(x, 0) = u°(x), xSfiUdfi,

and appropriate well-posed boundary conditions. The subscripts t and
X{, i = 1,2,..., d, denote partial differentiation with respect to time and
the spatial coordinates, and u, u°, and f,, i = 1,2, ...,d, are m-vectors
on the problem domain fi x (t > 0). Finite difference schemes for (1.1),
such as the Total Variation Diminishing (TVD) [33,36] and Essentially
Non-Oscillatory (ENO) [31] methods, usually achieve high-order accuracy
by using a computational stencil that enlarges with order. A wide sten-
cil makes the methods difficult to implement on unstructured meshes and
limits efficient implementation on massively parallel computers. Finite ele-
ment methods, however, have stencils that are invariant with method order,
allowing them to easily model problems with complicated geometries and
to be efficiently parallelized.

We use a discontinuous Galerkin finite element method [11,13,14] where
the spatial approximation is continuous within an element, but may be
discontinuous at interelement boundaries to accommodate solution discon-
tinuities more accurately. Fluxes at element boundaries are computed by
solving an approximate Riemann problem with a projection limiter applied
to keep the average solution monotone near discontinuities [11,14,36]. Time
discretization is performed by an explicit Runge-Kutta method.

The discontinuous Galerkin method is well suited to parallelization
on massively parallel computers. The computational stencil involves only
nearest-neighbor communication regardless of the degree of the piecewise
polynomial approximation and the spatial dimension. Additional storage is
needed for only one row of "ghost" elements along each edge of a processor's
subdomain. Thus, the size of the problem scales easily with the number of
processors. Indeed, for two-dimensional problems on rectangular domains
with periodic boundary conditions, scaled parallel efficiencies in excess of
97% are achieved [11].

To achieve parallel efficiency with irregular structures, parallel finite
element methods often use static load balancing [19,21] as a precursor to
obtaining a finite element solution. Parallel efficiency degrades substan-
tially due to processor load imbalances with adaptive enrichment. Even
with the lower parallel efficiency, however, execution times for comparable
accuracy are shorter with adaptive methods than for fixed-order methods.

We have developed an adaptive p-refinement method for two-dimen-
sional systems that uses dynamic load balancing to adjust the processor
decomposition in the presence of nonuniform and changing work loads.
Tiling [37] is a modification of a dynamic load balancing technique devel-
oped by Leiss and Reddy [24] that balances work within overlapping pro-
cessor neighborhoods to achieve a global load balance. Work is migrated
from a processor to others within the same neighborhood. We demonstrate
the improved performance obtained from a combination of p-adaptivity and
parallel computation on several examples using a 1024-processor nCUBE/2
hypercube.

For three-dimensional problems with irregular grids of tetrahedral ele-
ments and adaptive h-refinement, we have developed a tree-based mesh par-
titioning technique that exploits the properties of tree-structured meshes.
The rich, hierarchical structure of these meshes allows them to be divided
into components along boundaries of the tree structure. Our partitioning
technique is based on two tree traversals that (i) calculate the processing
costs of all subtrees of a node, and (n) form the partitions. Our method
is inexpensive and, thus, has an advantage relative to other global par-
titioning techniques [21,23,27]. We demonstrate the performance of the
tree-based mesh partitioning technique on a variety of three-dimensional
meshes and discuss extension of the technique for parallel implementation
and dynamic load balancing. We present results, using a Thinking Ma-
chines CM-5 computer, for the adaptive /»-refinement solutions of an Euler
flow past a cone.

2. The Discontinuous Galerkin Method. Partition the domain
ß into polygonal elements Qj, j = 1,2,..., J, and construct a weak form
of the problem by multiplying (1.1a) by a test function v G L2{Q.j) and

3

= 0.

integrating the result on fij to obtain

(2.1) / vTntdr + T [(vT{i(u))Xtdr- f vj.fi(u)dr
Jilj t = 1 [Jilt JClj

Apply the Divergence Theorem to (2.1) to obtain

(2.2) / vTutdr-T[vlM")dr + Y,f vTfi(u)n,d<r = 0,
Jcij i=1 Jcij i=1 Jan,

where n = ["i, "2, • • • > nd]T is the unit outward normal to öß;-. Approx-
imate u(x,2) on Qj by a p^-degree polynomial Uj(x,t) € Sj C -L2(fl,),
and test against all functions V G Sj. With initial conditions determined
by local L2 projection, this approximation yields the ordinary differential
system

(2.3a) / VT(U,-)«dr - T I Vj^U^dr

d t
+ V / VTf,(Uj)n,cf<T = 0, t>0,

(2.3b) / VT(UJ' - u°) dr = 0, * = 0, WeS;,

which we solve on Qj, j = 1,2,...,/, by explicit Runge-Kutta integra-
tion of order p. Integrals are evaluated numerically using Gauss-Legendre
quadrature. A basis for the local space Sj may be denned using prod-
ucts of one-dimensional Legendre polynomials, as distinct from hierarchical
bases for elliptic and parabolic systems [34] which use integrals of Legendre
polynomials. Two-dimensional bases involving tensor products of Legen-
dre polynomials have been constructed for quadrilateral [11] and triangu-
lar [15] elements. A three-dimensional basis for tetrahedral elements could
follow procedures developed for elliptic systems [34]. Results presented in
Section 5 for tetrahedral-element meshes involve only piecewise constant
approximations.

The normal component of the flux

d

(2.4) fn(u) = ^f,(u)ni

«=i

remains unspecified on dSlj with (2.3) since the approximate solution
is discontinuous there. We specify it using a "numerical flux" function
h(U+,UJ) dependent on solution states U* and UJ" on the inside and

4

outside, respectively, of <9fi;-. Several numerical flux functions are possi-
ble [14,31]. In two dimensions [11,15], we have used the Lax-Friedrichs
numerical flux,

(2.5a) h(Ut, U-) = |[fn(Ut) + fn(U;) - |a|(U- - U+)],

(2.5b) a = max(|A(fnu(U;))|), Uf < Uj < Uf,

where A(fnu) is an eigenvalue of the Jacobian fnu-
In three dimensions, we use van Leer's flux vector splitting [25,35] to

construct a numerical flux. This technique is not generally applicable but
does apply to the Euler equations of compressible flow which have the
solution and flux vectors

(2.6)

u' = [p,pu',pv',pw',e]T,
fi(u') = [pu',pu12+ p,pu'v',pu'w',u'(e+p)] ,
f2(u') = [pv',pu'v',pv'2+p,pv'w',v'(e+p)] ,

f3(u') = [pw',pu'w',pv'w',pw'2+p,w'(e+p)] ,

where p, e, and p are the density, energy, and pressure; u' is the velocity
component in the direction of n; and v' and w' are velocity components
tangent to dtlj. The numerical flux h on dQj is computed as

(2.7a)

where

(2.7b)

h(u;-,u;+) = f+(u;.+)+f1-(u;.-)

f+(U') ='f!(U'), ff(U') = o,
f+(U') = o,

if M' > 1;
ff(U') = f!(U'), if M' < -1;

f±(U') = ±p2i^i£

1
a[(j-l)M'±2]/j

w'
a3[(j-l)M'±2Y

2(7
ä-l) + '

if \M'\ < 1.

(2.7c)
where M' — U'/a, and a is the local speed of sound. Van Leer's numerical
flux has the property that the two components of the normal flux, ff and
ff, depend only on the solution on the same side of dtlj. Therefore, the flux
may be calculated by computing each component separately, exchanging
ff and ff between elements, and summing. This splitting approximately
halves the computational and parallel communications effort relative to
other flux evaluation schemes.

In regions where the numerical solution is smooth, the discontinuous
Galerkin method produces the 0(hp+1), h = max^i^,...,^ ;=i,2,...,j(Ax,J),
convergence expected in, e.g., L1 for a p(A-degree approximation [11,14].
To prevent spurious oscillations that develop near discontinuities with high-
order methods, we have developed a projection limiter that limits solution
moments [11,14,36]. Using a one-dimensional (d = 1) scalar problem and
the Legendre polynomial basis

(2.8) £>;«.*) = I>,(*)fl(0
1=0

as an illustration, the coefficient Cjk is proportional to the kth moment Mjk
oiUj\ i.e.,

(2.9)
Mjk := J_m,t)Pk{t)di=y^-iCjk,

4 = 0,1,....P-l, j = l,2,...,J.

Thus, to keep Mjk monotone, we must keep Cjk monotone on neighboring
elements, which we do by specifying

(2k + l)ciit+i =

(2.10a) minmod((2k + l)cj:k+i,cj+itk -Cj,k,Cjik -Cj-i,*),

where

minmod(a, b, c) =

(2 10b) { sign(a) mindal' l6l> lcD> if siSn(a) = siSnW = sign(c)
^ ' ^0, otherwise.

The limiter (2.10) is applied adaptively. First, the highest-order coeffi-
cient CjP is limited. Then the limiter is applied to successively lower-order
coefficients whenever the next higher coefficient on the interval has been
changed by the limiting. The higher-order coefficients are re-limited using
the updated low-order coefficients when necessary. In this way, the limit-
ing is applied only where it is needed, and accuracy is retained in smooth
regions. For two- and three-dimensional problems, the one-dimensional
limiter is applied in the direction n normal to ddj.

For vector systems, the scalar limiting is applied to the characteristic
fields of the system [13]. The diagonalizing matrices T(u) and T-1(u)
(consisting of the right and left eigenvectors of the Jacobian fnu) are eval-
uated using the average values of Uj, j = 1,2,..., J, on Q;-; the scalar
limiting is applied to each field of the characteristic vector; and the result
is transformed back to physical space by post-multiplication by T-1(U;).

6

3. Adaptive p-Refinement. We have developed an adaptive p-re-
finement version of the two-dimensional method (2.3, 2.5, 2.10) using rect-
angular grids and a method-of-lines framework. A spatial error estimate is
used to control order variation procedures that attempt to keep

j

(3.1a) e(t) = £>(')<£.

where e is prescribed and

(3.1b) ej(t) = \\f lufoO-U^OIdT-Hoo.
Ja,

Control is done locally with a goal of maintaining

(3.2) ej(t)<TOL = j, j = 1,2,..., J.

We initialize U;-(x, 0), j = 1,2,..., J, to the lowest-degree polynomial sat-
isfying (3.2) at t = 0. For times t > 0, we use p-refinement to calculate an
estimate Ej (t) of ej as

(3.3) £; = ll/ |U$+1-U$|dr|U j = l,2,...,J,

where U? is the p'A-degree finite element approximation of u. While this
estimate is computationally expensive, it is still less expensive than h-
refinement (Richardson's extrapolation) techniques and can be used to re-
duce the effort involved in recomputing Uj and its error estimate when
p-refinement is needed.

A less expensive error estimation procedure similar to successful proce-
dures for elliptic and parabolic systems [4,6] can be obtained by the (p+l)st-
degree polynomial correction to a ptA-degree solution while making use of
superconvergence to reduce complexity. We construct a (p + l)'*-degree
correction term K;(x,t) whose roots are the superconvergence points of
the approximation, and then estimate ej as

(3.4a) Ej(t) = \\f IK^x.OKrlloo, j = l,2,...,J.

For p = 0, the superconvergence points remain at the Legendre roots, but
for p > 0, the superconvergence points move toward the Radau points
[1,11], i.e., the roots of

as t increases. Then, for a two-dimensional approximation using a basis of
tensor products of Legendre polynomials on rectangular elements,

' cjn(t)Pi{OPi(ri)
+Cjio(i)Pi(OW
+cm(t)Po(OPi(v), ifp = 0

(3.4c) Kj(£,ri,t)={ CjiP+1,p+1(t)Rp+l(ORP+i(ri)
p

~+cjJ,+1,i(t)Rp+i{t)Pk(ri)), if P > 0.

To compute K; (x, t), let U;- = Uj + Kj, j = 1,2,..., J, substitute Üj into
(2.3), and solve for the coefficients of K,(x,t) with Uj fixed.

To compute Ej using (3.4), we solve 2p + 3 additional ordinary dif-
ferential equations in two dimensions, compared to an additional (p + 2)2

differential equations required for (3.3). The movement of the superconver-
gence points from the Legendre points at t = 0 toward the Radau points
for t > 0 is gradual, occurring over several time steps [11]. Thus, the
effectiveness of the estimate improves as the computation progresses.

After each time step, we compute Ej, j = 1,2,..., J, and increase the
polynomial degree of Uj by one if Ej > TOL. The solution Uj and the
error estimate are recomputed on enriched elements, and further increases
of degree occur until Ej < TOL on all elements.

We reduce the need for back-tracking by predicting the degree of the
approximation needed to satisfy the accuracy requirements during the next
time step. After a time step is accepted, if Ej > HmaxTOL, Hmax € (0,1],
we increase the degree of Uj(x,t + At) for the next time step. If Ej <
HminTOL, Hmin £ [0,1), we decrease the degree of U;(x,< + At) for the
next time step.

EXAMPLE 1. We demonstrate the accuracy of the error estimate (3.4)
in terms of its effectivity index

_ Estimated Error
^ ' Actual Error

for the two-dimensional problem

(3.6a) ut + ux + uy = 0, -Kx,y<l, t> 0,

with

(3.6b) u°(x,y) = sin(Trx)sm(Ty), -1 < x,y < 1,

and periodic boundary conditions. In Table 3.1, we show the actual errors
and effectivity indices with p = 0,1, and 2. Each time the mesh is refined,

8

the time step is halved, and the number of time steps is doubled. Effectivity
indices are near unity for the entire range of computation when p = 0. For
p — 1 and 2, the error estimate improves as the mesh is refined since the
superconvergence points move closer to the Radau points after each time
step.

Number of Actual
Elements Error e

p = 0 16 x 16 2.66838e- 1 0.967
32x32 1.33946e- 1 0.969
64x64 6.70306e-2 0.973

128 x 128 3.35206e-2 0.976
256 x 256 1.67605e-2 0.978

p = l 16 x 16 1.45948c-2 0.540
32x32 4.21090e-3 0.805
64x64 1.11300c-3 0.975

128 x 128 2.79793e-4 1.000
256 x 256 6.99557e - 5 1.000

p = 2 16 x 16 6.41413e-4 0.557
32x32 9.68358e-5 0.646
64x64 9.68224e - 6 1.128

128 x 128 1.26721c-6 1.009
256 x 256 1.58712e-7 1.000
512x512 1.98384c-8 1.000

TABLE 3.1
Errors and effectivity indices 0 at t = 0.025 using (3.4) for Example 1.

EXAMPLE 2. Consider

(3.7a) ut + 1ux + 2uy = 0, 0<x,y<l, t > 0,

with initial and Dirichlet boundary conditions specified so that the exact
solution is

(3.7b) u(x, y, t) = i(l - tanh(20z - lOy - 20* + 5)), 0 < x, y < 1.

In Figure 3.1, we show the exact solution of (3.7) at time t = 0 and the
degrees generated on a adaptive 16 x 16-element mesh to satisfy the initial
data when TOL = 10-5.

We solve (3.7) by both fixed-order and adaptive p-refinement methods
on 0 < t < 0.1. In Figure 3.2, we show the global L1-error versus the
CPU time for fixed-order methods with p = 0, 1, and 2 on 8 x 8, 16 x 16,
32 x 32, and 64 x 64-element meshes, and the p-adaptive method with
Hmax = 0.9, Hmin = 0.1, and TOL ranging from 5 x 10~9 to 5 x 10~4 on

US "j"i Hi n §■ 111 1

Ml Hl

V

Hi Ä
1 1

MP=2 MP=
3

FIG. 3.1. Exact solution of (3.7) at t = 0 and degrees generated on a 16 X 16-element
mesh with TOL = 10_5/or£xamp/e 2.

a 16 x 16-element mesh. The adaptive p-refinement method requires more
computation than the fixed-order methods for large error tolerances, but
because of its increasing convergence rate, it requires less work than the
fixed-order methods to obtain small errors.

4. Dynamic Load Balancing via Tiling. Tiling [37,38] is a modi-
fication of the global load balancing technique of Leiss and Reddy [24,29]
who used local balancing within overlapping processor neighborhoods to
achieve a global load balance. A neighborhood is defined as a processor
at the center of a circle of some predefined radius and all other processors
within the circle. Processors within a given neighborhood are balanced
with respect to each other using local performance measurements. Individ-
ual processors may belong to several neighborhoods. Work can be migrated
from a processor to any other processor within the same neighborhood. In
tiling, we extend the definition of a neighborhood to include all processors
having finite elements that are neighbors of elements in the center proces-
sor (see Figure 4.1). Tiling neighborhoods are not related to the hardware
interconnection of the processors as were the neighborhoods of Leiss and
Reddy [24]. Every processor is the center of one neighborhood, and may
belong to many neighborhoods. Elements are migrated only to processors
having neighbors of the migrating elements.

The tiling algorithm consists of (i) a computation phase and (it) a bal-
ancing phase, and is designed to be independent of the application. The
computation phase corresponds to the application's implementation with-
out load balancing. Each processor operates on its local data, exchanges

10

0.01

0.001

0.0001 -

18-05

1e-06
100 1000

CPU Time
10000 100000

FlG. 3.2. Convergence of the adaptive p-refinement method and fixed-order methods
with p = 0,1, and 2 for Example 2.

inter-processor boundary data, and processes the boundary data. A bal-
ancing phase restores load balance following a given number of computation
phases. Each balancing phase consists of the following operations:

1. Determine work loads. Each processor determines its work load
as the time to process its local data since the previous balancing
phase less the time to exchange inter-processor boundary data dur-
ing the computation phase. Neighborhood average work loads are
also calculated.

2. Determine processor work requests. Each processor com-
pares its work load to the work load of the other processors in its
neighborhood and determines those processors having loads greater
than its own. If any are found, it selects the one with the greatest
work load (ties are broken arbitrarily) and sends a request for work
to that processor. Each processor may send only one work request,
but a single processor may receive several work requests.

3. Select elements to satisfy work requests. Each processor pri-
oritizes the work requests it receives based on the request size, and
determines which elements to export to the requesting processor.
Elemental processing costs are used so that the minimum num-
ber of elements satisfying the work request are exported. (This
approach differs from Wheat [37], where the average cost per ele-
ment is used to determine the number of export elements). Details
of the selection algorithm follow.

4. Notify and transfer elements. Once elements to be exported

ll

o -processor • pr ocessor subdomain

FlG. 4.1. Examples of 12 processors in 12 neighborhoods using the Leiss/Reddy[24,29]
(left) and the tiling (right) definitions.

.have been selected, the importing processors and processors con-
taining neighbors of the exported elements are notified. Importing
processors allocate space for the incoming elements, and the ele-
ments are transferred.

Each processor knows the number of computation phases to perform
before entering the balancing phase. Synchronization guarantees that all
processors enter the balancing phase at the same time.

The technique for selecting elements gives priority to elements with
neighbors in the importing processor to prevent the creation of "narrow,
deep holes" in the element structures. Elements are assigned priorities
(initially zero) based upon the locality of their element neighbors. An
element's priority is decreased by one for each element neighbor in its own
processor, increased by two for each neighbor in the importing processor,
and decreased by two for each neighbor in some other processor. Thus,
elements whose neighbors are already in the importing processor are more
likely to be exported to that processor than elements whose neighbors are
in the exporting processor or some other processor. When an element has
no neighboring elements in its local processor, it is advantageous to export
it to any processor having its neighbors. Thus, "orphaned" elements are
given the highest export priority. When two or more elements have the
same priority, the processor selects the element with the largest work load
that does not cause the exported work to exceed the work request or the
work available for export.

In Figure 4.2, we illustrate an example of element priorities and se-
lection for satisfying a work request of 55 units from the east neighboring
processor. Initially, elements 3, 6, 9, and 12 are eligible for export. Their
priorities are computed; element 3, for example, has priority -2, since it
has two local neighbors (-2), one neighbor in the importing processor (+2),

12

and one neighbor in some other processor (-2). Elements 6 and 9 share
the highest priority, but element 6 is selected because it has a greater work
load. Element 5 becomes eligible for export, but its priority is low since
it has three local neighbors. The priorities are adjusted, and element 9 is
selected, making element 8 a candidate. The priorities are again updated,
and the selection process continues with elements 3 and 12 being selected.
Although the work request is not completely satisfied, no other elements
are exported, since the work loads of the elements with the highest priority,
5 and 8, are greater than the remaining work request.

EXAMPLE 3. We solve (3.7) with a fixed-order method (p = 3) on a
32 x 32-element mesh and tiling on 16 processors of the nCUBE/2 hyper-
cube. In Figure 4.3 (left), we show the processor domain decomposition
after 20 time steps. The tiling algorithm redistributes the work so that pro-
cessors containing elements on the domain boundary have fewer elements
than those in the interior of the domain. The global error of the numerical
solution is 4.76766 x 10-3. The total processing time was reduced by 5.18%
from 128.86 seconds to 122.18 seconds by balancing once each time step.
The average/maximum processor work ratio without balancing is 0.858;
with balancing, it is 0.942. Parallel efficiency is increased from 90.80%
without balancing to 95.58% with tiling.

We then solve (3.7) using the adaptive p-refinement method on a
32 x 32-element mesh with TOL = 3.5 x 10-5 and tiling on 16 proces-
sors. In Figure 4.3 (right), we show the processor domain decomposition
after 20 time steps. The shaded elements have higher-degree approxima-
tions and, thus, higher work loads. The tiling algorithm redistributes the
work so that processors with high-order elements have fewer elements than
those processors with low-order elements. The global error of the adaptive
solution is 4.44426 x 10-3, less than the fixed-order method above. The
total processing time for the adaptive method was reduced 41.98% from
63.94 seconds to 37.10 seconds by balancing once each time step. The av-
erage/maximum processor work ratio without balancing is 0.362, and with
balancing, it is 0.695. Parallel efficiency is increased from 35.10% without
balancing to 60.51% with tiling.

EXAMPLE 4. We solve (3.7) for 225 time steps on all 1024 processors of
the nCUBE/2 without balancing and with balancing once each time step.
A fixed-order method with p — 2 produces a solution with global error
6.40644 x 10~2. Using the tiling algorithm reduced the total execution
time 6.25% from 1601.96 seconds without balancing to 1501.90 seconds
with balancing (see Table 4.1). Parallel efficiency without balancing was
82.7%; with balancing, it was 88.2%.

The adaptive p-refinement method produced a solution with global
error 6.32205 x 10-2, comparable to the fixed-order solution. With bal-
ancing, the maximum computation time (not including communication or
balancing time) was reduced by 49.8% (see Table 4.1). The irregular sub-
domain boundaries created by the tiling algorithm increased the average

13

1 work: 25 2 work: 41 3 work: 25
priority: »2

4 work: 41 5 work: 41 S work: 13
priority: -1

7 work: 41 Q work: 13 9) work: 5
"~T>rJority: «1

10 work: 13 11 work: 5 12 j work: 5
priority: -2

Elements 3, 6, 9, and 12 are eligible for export. Initial work request = 55.

1 work: 25 2 work: 41 3 work: 25 |
priority: 1 1

4 work: 41 5 work: 41
priority: «1

7 work: 41 8 work: 13 9 work: 5
priority: 2

10 work: 13 11 work: 5 12] work: 5
priority: -2

6 work: 13

Elemente is selected for export and 5 becomes an export candidate.
Work request - 42.

1 work: 25 2 work: 41 3 | work: 25 1
priority: 1 1

4 work: 41 5 work; 41
priority: -1

7 work: 41 8 work: 13
priority: -l

10 work: 13 11 work: 5 12 | work: 5 1
priority: 1 1

6 work: 13

9 work: 5

After second selection, work request = 37.

1 work: 25 2 work: 41
priority: -2

4 work: 41 5 J work: 41
priority: -1

7 work: 41 Bj work: 13
—-priority: -1

10 work: 13 11 | work: 5 12 work: 5
priority: 1 1

3 work: 25

6 work: 13

9 work: 5

After third selection, work request = 12.

1 work: 25 2 work: 41
priority: -2

4 work: 41
 '

5 work: 41
priority: -1

7 work: 41 8 1 work: 13
—priority: -1

10 work: 13 11 I work: 5
—priority: -2

3 work: 25

6 work: 13

9 work: 5

12 work: 5

After fourth selection, work request = 7; no other elements are exported.

FIG. 4.2. Example of element priorities and the export element selection algorithm.

14

pa 1

ffiffl

II

m ■
P-+

III

KÜMW8«!* .-as»», »ääiääääisä»*« Sslä,:aS..aä

/>=J

FlG. 4.3. Processor domain decompositions after 20 time steps for Example 3 using
fixed-order (left) and adaptive order (right) methods. Dark lines represent processor
subdomain boundaries.

communication time by 2.5%. Despite the extra communication time and
the load balancing time, however, we see a 36.3% improvement in the total
execution time.

In Figure 4.4, we show the maximum processing costs per time step, in-
cluding the computation and balancing times, for the adaptive p-refmement
method. The dashed and solid lines represent the maximum cost without
and with balancing, respectively. The balanced computation's maximum
cost per time step is significantly lower than without balancing. The spikes
in both curves occur when the error tolerance was not satisfied on some
elements and the adaptive p-refinement method back-tracked to compute
a more accurate solution. In Figure 4.5, we show the cumulative maxi-
mum processing times with and without balancing. The immediate and
sustained improvement of the application's performance is shown.

15

S3.5

100
Time Steps

FIG. 4.4. Maximum work load during each time step for Example 4 with (solid line)
and without (dashed line) balancing.

5 400

200

FlG. 4.5. Cumulative maximum loads for Example 4 with (solid line) and without
(dashed line) balancing.

16

Fixed-Order (p=2)
Global Error: 0.06406

Adaptive p-refinement
Global Error: 0.06322

Without
Tiling

With
Tiling

Without
Tiling

With
Tiling

Total Execution
Time (seconds) 1601.96 1501.90 858.50 546.75

Max. Computation
Time (seconds) 1549.77 1429.24 782.93 393.32

Average/Maximum
Work Ratio 0.855 0.927 0.427 0.851

Avg. Communication
Time (seconds) 59.09 59.09 70.85 72.65
Max. Balancing
Time (seconds) 0.0 20.88 0.0 23.46

Parallel
Efficiency 82.7% 88.2% 38.98% 61.21%

Performance comparison jo
and with balancing at each

TABLE 4.1
r Example 4 using fixed-order and adaptive methods without
time step.

5. Three-Dimensional Mesh Partitioning. We describe a tree-
based partitioning technique which utilizes the hierarchical structure of
octree-derived unstructured meshes to distribute elemental data across pro-
cessors' memories while reducing the amount of data that must be ex-
changed between processors. An octree-based mesh generator [30] recur-
sively subdivides an embedding of the problem domain in a cubic universe
into eight octants wherever more resolution is required. Octant bisection
is initially based on geometric features of the domain but solution-based
criteria are introduced during an adaptive /i-refinement process. Finite
element meshes of tetrahedral elements are generated from the octree by
subdividing terminal octants.

In Figure 5.1, we illustrate the tree and mesh for a two-dimensional
flow domain containing a small object. The root of the tree represents
the entire domain (Figure 5.1c). The domain is recursively quartered until
an adequate resolution of the object is obtained (Figure 5.1a). A smooth
gradation is maintained by enforcing a one-level maximum difference be-
tween adjacent quadrants. After appropriate resolution is obtained, leaf
quadrants are subdivided into triangular elements that are pointed to by
leaf nodes of the tree (Figures 5.1b,c). The leaf quadrant containing the
object must be decomposed into triangles based on the geometry of the
object boundary. Smoothing, which normally follows element creation, is
not shown.

Our tree-based based partitioning algorithm creates a one-dimensional
ordering of the octree and divides it into nearly equal-sized segments based

17

(a) (b)

—d >

(c)

FlG. 5.1. A quadtree representation of the flow field surrounding an object (a), division
of terminal quadrants into triangular elements (b), and quadtree structure (c).

on tree topology. The first step of the algorithm is the determination of
cost metrics for all subtrees. Cost is currently defined as the number of
elements within a subtree. For a leaf octant, this would simply be the
number of tetrahedra associated with it. P-refinement would necessitate
the inclusion of an element's order into the cost function. If the solution
algorithm employs spatially-dependent time steps then, typically, a greater
number of smaller time steps must be taken on smaller elements and this
must also be reflected in the subtree cost. In any event, appropriate costs
may be determined by a postorder traversal of the octree.

The second phase of the partitioning algorithm uses the cost informa-
tion to construct the actual partitions. Since the number of partitions is
prescribed and the total cost is known from the first phase, we also know
the optimal size of each partition. Partitions consist of a set of octants
that are each the root of a subtree and are determined by a truncated
depth-first search. Thus, octree nodes are visited in depth-first order, and

18

subtrees are accumulated into successive partitions. The subtree rooted
at the visited node is added to the current partition if it fits. If it would
exceed the optimal size of the current partition, a decision must be made
as to whether it should be added, or whether the traversal should examine
it further. In the latter case, the traversal continues with the offspring of
the node and the subtree may be divided among two or more partitions.
The decision on whether to add the subtree or examine it further is based
on the amount by which the optimal partition size is exceeded. A small
excess may not justify an extensive search and may be used to balance
some other partition which is slightly undersized. When the excess at a
node is too large to justify inclusion in the current partition, and the node
is either terminal or sufficiently deep in the tree, the partition is closed and
subsequent nodes are added to the next partition.

This partitioning method requires storage for nonterminal nodes of the
tree which would normally not be necessary since they contain no solution
data. However, only minimal storage costs are incurred since information
is only required for tree connectivity and the cost metric. For this modest
investment, we have a partitioning algorithm that only requires 0(J) serial
steps.

Partitions formed by this procedure do not necessarily form a single
connected component; however, the octree decomposition and the orderly
tree traversal tend to group neighboring subtrees together. Furthermore, a
single connected component is added to the partition whenever a subtree
fits within the partition.

A tree-partitioning example is illustrated in Figure 5.2. All subtree
costs are determined by a post order traversal of the tree. The partition
creation traversal starts at the root, Node 0 (Figure 5.2a). The node cur-
rently under investigation is identified by a double circle. The cost of the
root exceeds the optimal partition cost, so the traversal descends to Node
1 (Figure 5.2b). As shown, the cost of the subtree rooted at node 1 is
smaller than the optimal partition size and, hence, this subtree is added
to the current partition, pO, and the traversal continues at Node 2 (Fig-
ure 5.2c). The cost of the subtree rooted at Node 2 is too large to add
to pO, so the algorithm descends to an offspring of Node 2 (Figure 5.2d).
Assuming Node 4 fits in pO, the traversal continues with the next offspring
of Node 2 (Figure 5.2e). Node 5 is a terminal node whose cost is larger
than the available space in pO, so the decision is made to close pO and begin
a new partition, pi. As shown (Figure 5.2f), Node 5 is very expensive, and
when the traversal is continued at Node 3, pi must be closed and work
continues with partition p2.

The tree-traversal partitioning algorithm may easily be extended for
use with a parallel adaptive environment. An initial partitioning is made
using the serial algorithm described above. As the numerical solution ad-
vances in time, h- and/or p-refinement introduces a load imbalance. To
obtain a new partitioning, let each processor compute its subtree costs us-

19

(a) (0

FlG. 5.2. A tree ■partitioning example. The partition-creation traversal starts at the root
(a). Nodes are visited and added to the current partition if their subtree fits (b). When
a subtree is too large to fit (c), the traversal descends into the subtree (i). Alternatively,
the partition is closed and work begins on a new partition (e). The process continues
until the traversal is complete (}).

ing the serial traversal algorithm within its domain. This step requires
no interprocessor communication. An inexpensive parallel prefix operation
may be performed on the processor-subtree totals to obtain a global cost
structure. This information enables a processor to determine where its
local tree traversal is located in the global traversal.

Now, following the serial procedure, each processor may traverse its
subtrees to create partitions. A processor determines the partition number
to start working on based on the total cost of processors preceeding it.
Each processor starts counting with this prefix cost and traverses its sub-
trees adding the cost of each visited node to this value. Partitions end near
cost mutiples of N/P, where N is the total cost and P is the number of
processors. Exceeding a multiple of N/P during the traversal is analagous
to exceeding the optimal partition size in the serial case and the same crite-
ria may be used to determine where to end partitions. When all processors
finish their traversals, each subtree (and its associated data) is assigned to
a new partition and may be migrated to its new location. Migration may be
done using global communication; however, on some architectures, it may
be more efficient to move data via simultaneous processor shift operations.
This linear communication pattern is made possible by the one-dimensional
nature of the partition traversal.

While the cost of computing the new partition is small, the cost of

20

FlG. 5.3. Iterative rebalancing of tree-based partitions. The subtree rooted at Node 4
(a) has been shifted from pO to pi (b) to relieve a load imbalance. The new root of pi
is Node 2, the common parent of Nodes 4 "-rid 5.

data movement is likely to be high and it would be desirable to amor-
tize this by tolerating small imbalances. A strategy to delay the need for
complete repartitioning would simply shift partition boundaries, thus, mi-
grating subtrees from a processor P„ to its neighbors P„_i and Pn+i- If,
for example, processor Pn seeks to transfer cost m to Pn-i, it simply tra-
verses its subtrees accumulating their costs until it reaches m. The nodes
visited comprise a subtree which may be transferred to Pn-i and which is
contiguous with the subtrees in Pn-i- Likewise, if Pn desires to transfer
work to Pn+i, the reverse traversal could remove a subtree from the trail-
ing part of Pn. Consider, as an example, the subtree rooted at Node 4 of
Figure 5.3a and suppose that its cost has increased through refinement. In
Figure 5.3b, we show how the partition boundary may be shifted to move
the subtree rooted at Node 4 to partition pi. The amount of data to be
moved from processor to processor may utilize a relaxation algorithm or
the tiling procedure discussed in Section 4.

EXAMPLE 5. Performance results obtained by applying the tree-based
mesh partitioning algorithm to various three-dimensional irregular meshes
are presented in Figure 5.4. The meshes were generated by the Finite Oc-
tree mesh generator [30]. "Airplane" is a 182K-element mesh of the volume
surrounding a simple airplane [17]. "Copter" is a 242K-element mesh of
the body of a helicopter [17]. "Onera," "Onera2," and "Onera3" are 16K-,
70K-, and 293K-element meshes, respectively, of the space surrounding a
swept, untwisted Onera-M6 wing which has been refined to resolve a bow
shock [18]. "Cone" is a 139K-element mesh of the space around a cone hav-
ing a 10° half-angle and which also has been refined to resolve a shock.

The quality of a partition has been measured as the percent of element
faces lying on inter-partition boundaries relative to the total number of
faces of the mesh. Graphs in Figure 5.4 display these percentages as a
function of the optimal partition size. In all cases the cost variance between
the partitions is very small (about as small as the maximum cost of a leaf
octant). The proportion in Figure 5.4 is, in a sense, the total surface area

21

45

40

35

30 "r

25

20

-I

'airplane' -*—
cone" -i—

'copter' -B--
"onera" *—

'onera2' -*■-
"onera3" -*-•-

10000 20000 30000 40000
Optimal Partition Size

50000 60000

45 -|
"airplane" -•—

cone" -i—
"copter" -B--
"onera" -*~

"onera2" -*■-
"onera3" -»■•■

40 •

35

1000 2000 3000 4000
Optimal Partition Size

5000 6000

FlG. 5.4. Performance of the tree partitioning algorithm on five meshes: large-scale
(top) and small-scale (bottom).

22

that partitions hold in common. Smaller ratios require less communication
relative to the amount of local data access. This measure is closely related
to the number of "cuts" that the partition creates [23,20,32]; however, we
have chosen to normalize by the total number of faces in order to compare
partition quality over a wide range of mesh sizes and number of partitions.

In large scale (top) the data of Figure 5.4 show the expected behaviour
that the interface proportion approaches zero as the partition size increases
(due to the number of partitions approaching unity). Conversely, as the
optimal partition size approaches unity (due to number of partitions ap-
proaching the number of elements), the interface proportion goes to unity.
Examination of the small scale (bottom) results reveals that the interface
proportion is less than 12% when the partition size exceeds 1000 for these
meshes. Interfaces drop to below 9% and 8%, respectively, for partition
sizes of 2000 and 3000. This performance is comparable to recursive spec-
tral bisection [22] but requires much less computation (O(J) as opposed to
0{P) [27]).

The best performance occurred with the helicopter mesh, which was
the only mesh of a solid object (as opposed to a flow field surrounding
an object). The solid can easily be cut along its major axis to produce
partitions with small inter-partition boundaries, and was included for gen-
erality. The lowest performance occurred with the cone mesh. This is most
likely due to the model and shock region being conically shaped, which
is somewhat at odds with the rectangular decomposition imposed by the
octree.

In general, inter-partition boundaries should be less than 10%, indi-
cating partition sizes of 2000 or more. This minimum partition size is not
an excessive constraint, since a typical three-dimensional problem employ-
ing a two million-element mesh being solved on a 1024-processor computer
would have about 2000 elements per processing element.

Another measure of partition quality is the percent of a partition's ele-
ment faces lying on inter-partition boundaries relative to the total number
of faces in that partition. This number is, in a sense, the ratio of surface
area to volume of a partition. For our example meshes, this measure was
below 22% and 18%, respectively, for partition sizes of 1000 and 1500.

EXAMPLE 6. In Figure 5.5 we show partitions of several meshes from
Example 5. The partitions exhibit a blocked structure; however, several
partitions of the airplane mesh appear to be made up of disconnected com-
ponents. While this is possible, although unlikely, in this case the partitions
appear to be disconnected because the display is a two-dimensional slice
through the three-dimensional domain.

EXAMPLE 7. In Figure 5.6 we show the pressure contours of a Mach 2
Euler flow (1.1,2.6) past the "Cone" mesh of Example 5. The solution em-
ploys van Leer's flux vector splitting (2.7) and was computed on a Thinking
Machines CM-5 with 128 processors. Several iterations of A-refinement were
required to yield this mesh. At each iteration, elements were marked with

23

FlG. 5.5. The airplane mesh, and three refinements of the Onera M6 wing mesh, all
divided into 32 partitions. Each color represents a different partition.

24

FIG. 5.6. Shock surface and pressure contours found when computing the Mach 2 flow
past a cone having a half-angle of 10° (top). Partitions of the mesh into 16 (left) and
St (right) pieces (bottom). Each color represents a different partition.

25

the desired tree level (either larger for refinement, or smaller for coarsen-
ing), and a new global mesh created to satisfy these constraints. The shock
surface and pressure contours are shown above; below are examples of how
the mesh may be partitioned for 16 and 32 processor machines. Each color
represents membership in a different partition (and, hence, residence on a
different processor).

6. Conclusion. We have demonstrated the effectiveness of adaptive
methods for solving systems of hyperbolic conservation laws on massively
parallel computers. Using a discontinuous Galerkin finite element method
with projection limiting of moments of the solution within an element, we
can model problems with discontinuities sharply without spurious oscil-
lations. The discontinuous Galerkin method has a small computational
stencil, enabling its efficient implementation on massively parallel comput-
ers. Adaptive p- and A-refinement methods provide faster convergence than
traditional methods, but their nonuniform work loads create load imbal-
ance on parallel computers, reducing the parallel efficiency of the methods.
We correct the load imbalance by using a dynamic load balancing technique
called tiling that produces a global balance by performing local balancing
within overlapping neighborhoods of processors. Using tiling and adaptive
p-refinement, computation of a two-dimensional example required approxi-
mately one-third as much time as a fixed-order computation with the same
global accuracy. In three dimensions, we have demonstrated the effec-
tiveness of a tree-based mesh partitioning algorithm for reducing parallel
communication costs. This algorithm performs almost as well as recursive
spectral bisection, but requires much less work to compute a partitioning.

In future work, we will combine the adaptive h- and p-refinement tech-
niques to obtain an adaptive /ip-refinement method that can optimize com-
putational effort in both smooth and discontinuous solution regions. We
will extend the tiling algorithm to incorporate the changing data structures
required for /i-refinement, and experiment with load balancing strategies for
adaptive ftp-refinement meshes. The tree-based partitioning algorithm will
be extended to operate in parallel, and we will experiment with dynamic
rebalancing strategies.

7. Acknowledgements. We wish to thank Thinking Machines Cor-
poration, and in particular Zdenek Johan and Kapil Mathur, for their as-
sistance with the CM-5.

REFERENCES

[1] S. ADJERID, M. AIFFA, AND J. E. FLAHERTY, Adaptive Finite Element Methods
for Singularly Perturbed Elliptic and Parabolic Systems, submitted for publi-
cation, 1993.

[2] S. ADJERID AND J. E. FLAHERTY, Second-Order Finite Element Approximations
and A Posteriori Error Estimation for Two-Dimensionai Parabolic Systems,
Numer. Math., Vol. 53, 1988, pp. 183-198.

26

[3] S. ADJERID, J. FLAHERTY, P. MOORE, AND Y. WANG, High-Order Adaptive Meth-
ods for Parabolic Systems, Physica-D, Vol. 60, 1992, pp. 94-111.

[4] S. ADJERID, J. FLAHERTY, AND Y. WANG, A Posteriori Error Estimation with Fi-
nite Element Methods of Lines for One-Dimensional Parabolic Systems, Nu-
mer. Math., Vol. 65, 1993, pp. 1-21.

[5] D. C. ARNEY AND J. E. FLAHERTY, An Adaptive Mesh Moving and Local Refine-
ment Method for Time-Dependent Partial Differential Equations, ACM Trans.
Math. Software, Vol. 16, 1990, pp. 48-71.

[6] I. BABUSKA, The p- and hp-Versions of the Finite Element Method. The State of
the Art, in "Finite Elements: Theory and Appliations," Springer-Verlag, New
York, 1988.

[7] I. BABUSKA, B. A. SZABO, AND I. N. KATZ, The p-Version of The Finite Element
Method, SIAM J. Numer. Anal., Vol. 18, 1981, pp. 515-545.

[8] M. J. BERGER AND J. ÖLIGER, Adaptive Mesh Refinement for Hyperbolic Partial
Differential Equations, J. Comput. Phys., Vol. 53, 1984, pp. 484-512.

[9] K. S. BEY AND J. T. ODEN, An A Posteriori Error Estimate for Hyperbolic Con-
servation Laws, preprint, 1993.

[10] M. B. BlETERMAN AND I. BABUSKA, The Finite Element Method for Parabolic
Equations, II. A Posteriori Error Estimation and Adaptive Approach, Numer.
Math., Vol. 40, 1982, pp. 373-406.

[11] R. BISWAS, K. D. DEVINE, AND J. E. FLAHERTY, Parallel, Adaptive Finite Element
Methods for Conservation Laws, Appl. Numer. Math., 1993, to appear.

[12] R. BISWAS, J. E. FLAHERTY, AND D. C. ARNEY, An Adaptive Mesh Moving and
Refinement Procedure for One-Dimensional Conservation Laws, Appl. Numer.
Math., 1993, to appear.

[13] B. COCKBURN, S.-Y. LIN, AND C.-W. SHU, TVB Runge-Kutta Local Projection
Discontinuous Galerkin Finite Element Method for Conservation Laws III:
One-Dimensional Systems, J. Comput. Phys., Vol. 84, 1989, pp. 90-113.

[14] B. COCKBURN AND C.-W. SHU, TVB Runge-Kutta Local Projection Discontinuous
Galerkin Finite Element Method for Conservation Laws II: General Frame-
work, Math. Comp., Vol. 52, 1989, pp. 411-435.

[15] B. COCKBURN, S.-Y. LIN, AND C.-W. SHU, TVB Runge-Kutta Local Projection
Discontinuous Galerkin Finite Element Method for Conservation Laws IV: The
Multidimensional Case, Math. Comp., Vol. 54, 1990, pp. 545-581.

[16] P. DEVLOO, J. T. ODEN, AND P. PATTANI, An h-p Adaptive Finite Element Method
for the Numerical Simulation of Compressible Flow, Comput. Methods Appl.
Mech. Engng., Vol. 70, 1988, pp. 203-235.

[17] S. DEY, personal communication, 1993.
[18] M. DINAR, personal communication, 1993.
[19] S. HAMMOND, Mapping Unstructured Grid Computations to Massively Parallel

Computers, Ph.D. Dissertation, Rensselaer Polytechnic Institute, Dept. Comp.
Sei., Troy, 1992.

[20] B. HENDRICKSON AND R. LELAND, An Improved Spectral Graph Partitioning Algo-
rithm for Mapping Parallel Computations, Sandia National Laboratories Tech.
Rep. SAND92-1460, Albuquerque, 1992.

[21] B. HENDRICKSON AND R. LELAND, Multidimensional Spectral Load Balancing, San-
dia National Laboratories Tech. Rep. SAND93-0074, Albuquerque, 1993.

[22] Z. JOHAN, personal communication, 1993.
[23] Z. JoHAN, K. MATHUR, AND S. L. JOHNSSON, An Efficient Communication Strat-

egy for Finite Element Methods on the Connection Machine CM-5 System,
Thinking Machines Tech. Rep. No. 256, 1993, submitted for publication.

[24] E. LEISS AND H. REDDY, Distributed Load Balancing: Design and Performance
Analysis, W. M. Keck Research Computation Laboratory, Vol. 5, 1989, pp.
205-270.

[25] R. A. LUDWIG, J. E. FLAHERTY, F. GUERINONI, P. L. BAEHMANN, AND M. S.
SHEPHARD, Adaptive Solutions of the Euler Equations Using Finite Quadtree

27

and Octree Grids, Computers and Structures, Vol. 30, 1988, pp. 327-336.
[26] P. K. MOORE AND J. E. FLAHERTY, A Local Refinement Finite-Element Method

for One-Dimensional Parabolic Systems, SIAM J. Numer. Anal., Vol. 27, 1990,
pp. 1422-1444.

[27] A. POTHEN, H. SIMON, AND K.-P. LlOU, Partitioning Sparse Matrices with Eigen-
vectors of Graphs, SIAM J. Matrix Analysis and Applications, Vol. 11, 1990,
pp. 430-452.

[28] E. RANK AND I. BABUSKA, An Expert System for the Optima] Mesh Design in the
hp-Version of the Finite Element Method, Int. J. Numer. Meths. Engng., Vol.
24, 1987, pp. 2087-2106.

[29] H. N. REDDY, On Load Balancing, Ph.D. Dissertation, Dept. Comp. Sei., Univ. of
Houston, Houston, TX, 1989.

[30] M. S. SHEPHARD AND M. K. GEORGES, Automatic Three-Dimensional Mesh Gen-
eration by the Finite Octree Technique, Int. J. Numer. Meths. Engng., Vol.
32, No. 4, 1991, pp. 709-749.

[31] C.-W. SHU AND S. OSHER, Efficient Implementation of Essentially Non-Oscillatory
Shock-Capturing Schemes, II, J. of Comput. Phys., Vol. 27, 1978, pp. 1-31.

[32] H. D. SIMON, Partitioning of Unstructured Problems for Parallel Processing, Com-
put. Systs. Engng., Vol. 2, 1991, pp. 135-148.

[33] P. K. SWEBY, High Resolution Schemes Using Flux Limiters for Hyperbolic Con-
servation Laws, SIAM J. Numer. Anal., Vol. 21, 1984, pp. 995-1011.

[34] B. SZABO AND I. BABUSKA, Introduction to Finite Element Analysis, J. Wiley and
Sons, New York, 1990.

[35] B. VAN LEER, Flux Vector Splitting for the Euler Equations, ICASE Report. No.
82-30, Inst. Comp. Applies. Sei. Engng., NASA Langley Research Center,
Hampton, 1982.

[36] B. VAN LEER, Towards the Ultimate Conservative Difference Scheme. IV. A New
Approach to Numerical Convection, J. Comput. Phys., Vol. 23, 1977, pp. 276-
299.

[37] S. R. WHEAT, A Fine Grained Data Migration Approach to Application Load
Balancing on MP MIMD Machines, Ph.D. Dissertation, Dept. Comp. Sei.,
Univ. of New Mexico, Albuquerque, 1992.

[38] S. R. WHEAT, K. D. DEVINE, AND A. B. MACCABE, Experience with Automatic,
Dynamic Load Balancing and Adaptive Finite Element Computation, Proc.
Hawaii Int. Conf. System Sciences, 1994, to appear.

28

